Package: BayesSampling (via r-universe)

August 12, 2024

```
Type Package
Title Bayes Linear Estimators for Finite Population
Version 1.1.0
Date 2021-04-24
Maintainer Pedro Soares Figueiredo <pedrosfig@hotmail.com>
Description Allows the user to apply the Bayes Linear approach to
     finite population with the Simple Random Sampling - BLE SRS() -
     and the Stratified Simple Random Sampling design - BLE_SSRS() -
     (both without replacement), to the Ratio estimator (using
     auxiliary information) - BLE_Ratio() - and to categorical data
     - BLE_Categorical(). The Bayes linear estimation approach is
     applied to a general linear regression model for finite
     population prediction in BLE_Reg() and it is also possible to
     achieve the design based estimators using vague prior
     distributions. Based on Gonçalves, K.C.M, Moura, F.A.S and
     Migon, H.S.(2014)
     <https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201400111886>.
URL https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201400111886,
     https://github.com/pedrosfig/BayesSampling
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Depends R (>= 3.5)
Imports MASS, Matrix, stats, matrixcalc
Suggests knitr, rmarkdown, TeachingSampling
VignetteBuilder knitr
Language en-US
Repository https://pedrosfig.r-universe.dev
RemoteUrl https://github.com/pedrosfig/bayessampling
```

2 BigCity

RemoteRef HEAD

RemoteSha 13095496b1d1c2c51167e3e7d59446a4319aae0e

Contents

BigC	ity		Fu	ll P	ers	son	-le	vel	Po	ррі	ula	tic	on .	Dα	ıta	ba	ise									
Index																										15
	V_theta_Reg				٠		٠			•			•			•		•		•	 	•	•	•	•	 14
	V_beta																				 					 13
	VT_Reg																				 					 13
	T_Reg																				 					 12
	E_theta_Reg .																				 					 12
	E_beta																				 					 11
	create1																				 					 11
	C																				 					 10
	BLE_SSRS .																				 					 9
	BLE_SRS																				 					 7
	BLE_Reg																				 					 6
	BLE_Ratio .																				 					 4
	BLE_Categoric	cal .																			 					 3
	BigCity																				 					 _ 2

Description

This data set corresponds to some socioeconomic variables from 150266 people of a city in a particular year.

Usage

data(BigCity)

Format

A data.frame with 150266 rows and 12 variables:

HHID The identifier of the household. It corresponds to an alphanumeric sequence (four letters and five digits).

PersonID The identifier of the person within the household. NOTE it is not a unique identifier of a person for the whole population. It corresponds to an alphanumeric sequence (five letters and two digits).

Stratum Households are located in geographic strata. There are 119 strata across the city.

PSU Households are clustered in cartographic segments defined as primary sampling units (PSU). There are 1664 PSU and they are nested within strata.

BLE_Categorical 3

Zone Segments clustered within strata can be located within urban or rural areas along the city.

Sex Sex of the person.

Income Per capita monthly income.

Expenditure Per capita monthly expenditure.

Employment A person's employment status.

Poverty This variable indicates whether the person is poor or not. It depends on income.

Source

```
https://CRAN.R-project.org/package=TeachingSampling
```

References

Package 'TeachingSampling'; see BigCity

BLE_Categorical

Bayes Linear Method for Categorical Data

Description

Creates the Bayes Linear Estimator for Categorical Data

Usage

```
BLE_Categorical(ys, n, N, m = NULL, rho = NULL)
```

Arguments

ys	k-vector of sample proportion for each category.
n	sample size.
N	total size of the population.
m	k-vector with the prior proportion of each strata. If NULL, sample proportion for each strata will be used (non-informative prior).
rho	matrix with the prior correlation coefficients between two different units within categories. It must be a symmetric square matrix of dimension k (or k-1). If

NULL, non-informative prior will be used.

Value

A list containing the following components:

- est.prop BLE for the sample proportion of each category
- Vest.prop Variance associated with the above
- Vs.Matrix Vs matrix, as defined by the BLE method (should be a positive-definite matrix)
- R. Matrix R matrix, as defined by the BLE method (should be a positive-definite matrix)

4 BLE_Ratio

Source

```
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201400111886
```

References

Gonçalves, K.C.M, Moura, F.A.S and Migon, H.S.(2014). Bayes Linear Estimation for Finite Population with emphasis on categorical data. Survey Methodology, 40, 15-28.

Examples

```
# 2 categories
ys < -c(0.2614, 0.7386)
n <- 153
N <- 15288
m < -c(0.7, 0.3)
rho <- matrix(0.1, 1)
Estimator <- BLE_Categorical(ys,n,N,m,rho)</pre>
Estimator
ys <- c(0.2614, 0.7386)
n <- 153
N <- 15288
m < -c(0.7, 0.3)
rho <- matrix(0.5, 1)
Estimator <- BLE_Categorical(ys,n,N,m,rho)</pre>
Estimator
# 3 categories
ys <- c(0.2, 0.5, 0.3)
n <- 100
N <- 10000
m < -c(0.4, 0.1, 0.5)
mat < -c(0.4, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.6)
rho <- matrix(mat, 3, 3)</pre>
```

 BLE_Ratio

Ratio BLE

Description

Creates the Bayes Linear Estimator for the Ratio "estimator"

Usage

```
BLE_Ratio(ys, xs, x_nots, m = NULL, v = NULL, sigma = NULL, n = NULL)
```

BLE_Ratio 5

Arguments

ys	vector of sample observations or sample mean (sigma and n parameters will be required in this case).
xs	vector with values for the auxiliary variable of the elements in the sample or sample mean.
x_nots	vector with values for the auxiliary variable of the elements not in the sample.
m	prior mean for the ratio between Y and X . If NULL, mean(ys)/mean(xs) will be used (non-informative prior).
V	prior variance of the ratio between Y and X (bigger than sigma^2). If NULL, it will tend to infinity (non-informative prior).
sigma	prior estimate of variability (standard deviation) of the ratio within the population. If NULL, sample variance of the ratio will be used.
n	sample size. Necessary only if ys and xs represent sample means (will not be used otherwise).

Value

A list containing the following components:

- est.beta BLE of Beta
- Vest.beta Variance associated with the above
- est.mean BLE for each individual not in the sample
- Vest.mean Covariance matrix associated with the above
- \bullet est.tot BLE for the total
- Vest. tot Variance associated with the above

Source

```
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201400111886
```

References

Gonçalves, K.C.M, Moura, F.A.S and Migon, H.S.(2014). Bayes Linear Estimation for Finite Population with emphasis on categorical data. Survey Methodology, 40, 15-28.

Examples

```
ys <- c(10,8,6)
xs <- c(5,4,3.1)
x_nots <- c(1,20,13,15,-5)
m <- 2.5
v <- 10
sigma <- 2
Estimator <- BLE_Ratio(ys, xs, x_nots, m, v, sigma)
Estimator</pre>
```

BLE_Reg

```
# Same example but informing sample means and sample size instead of sample observations ys <- mean(c(10,8,6))  
xs <- mean(c(5,4,3.1))  
n <- 3  
x_nots <- c(1,20,13,15,-5)  
m <- 2.5  
v <- 10  
sigma <- 2  
Estimator <- BLE_Ratio(ys, xs, x_nots, m, v, sigma, n)  
Estimator
```

BLE_Reg

General BLE case

Description

Calculates the Bayes Linear Estimator for Regression models (general case)

Usage

```
BLE_Reg(ys, xs, a, R, Vs, x_nots, V_nots)
```

Arguments

ys	response variable of the sample
XS	explicative variable of the sample
а	vector of means from Beta
R	covariance matrix of Beta
Vs	covariance of sample errors
x_nots	values of X for the individuals not in the sample
V_nots	covariance matrix of the individuals not in the sample

Value

A list containing the following components:

- est.beta BLE of Beta
- Vest. beta Variance associated with the above
- est.mean BLE of each individual not in the sample
- Vest.mean Covariance matrix associated with the above
- est.tot BLE for the total
- Vest. tot Variance associated with the above

BLE_SRS 7

Source

```
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201400111886
```

References

Gonçalves, K.C.M, Moura, F.A.S and Migon, H.S.(2014). Bayes Linear Estimation for Finite Population with emphasis on categorical data. Survey Methodology, 40, 15-28.

Examples

```
xs <- matrix(c(1,1,1,1,2,3,5,0),nrow=4,ncol=2)
ys <- c(12,17,28,2)
x_nots <- matrix(c(1,1,1,0,1,4),nrow=3,ncol=2)
a <- c(1.5,6)
R <- matrix(c(10,2,2,10),nrow=2,ncol=2)
Vs <- diag(c(1,1,1,1))
V_nots <- diag(c(1,1,1))
Estimator <- BLE_Reg(ys, xs, a, R, Vs, x_nots, V_nots)
Estimator</pre>
```

BLE_SRS

Simple Random Sample BLE

Description

Creates the Bayes Linear Estimator for the Simple Random Sampling design (without replacement)

Usage

```
BLE\_SRS(ys, N, m = NULL, v = NULL, sigma = NULL, n = NULL)
```

ys	vector of sample observations or sample mean (sigma and n parameters will be required in this case).
N	total size of the population.
m	prior mean. If NULL, sample mean will be used (non-informative prior).
V	prior variance of an element from the population (bigger than $sigma^2$). If NULL, it will tend to infinity (non-informative prior).
sigma	prior estimate of variability (standard deviation) within the population. If NULL, sample variance will be used.
n	sample size. Necessary only if ys represent sample mean (will not be used otherwise).

8 BLE_SRS

Value

A list containing the following components:

- est.beta BLE of Beta (BLE for every individual)
- Vest.beta Variance associated with the above
- est.mean BLE for each individual not in the sample
- Vest.mean Covariance matrix associated with the above
- est.tot BLE for the total
- Vest. tot Variance associated with the above

Source

```
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201400111886
```

References

Gonçalves, K.C.M, Moura, F.A.S and Migon, H.S.(2014). Bayes Linear Estimation for Finite Population with emphasis on categorical data. Survey Methodology, 40, 15-28.

Examples

```
ys < -c(5,6,8)
N <- 5
m <- 6
v <- 5
sigma <- 1
Estimator <- BLE_SRS(ys, N, m, v, sigma)</pre>
Estimator
# Same example but informing sample mean and sample size instead of sample observations
ys <- mean(c(5,6,8))
N <- 5
n <- 3
m <- 6
v <- 5
sigma <- 1
Estimator <- BLE_SRS(ys, N, m, v, sigma, n)
Estimator
```

BLE_SSRS 9

BLE_SSRS	Stratified Simple Random Sample BLE

Description

Creates the Bayes Linear Estimator for the Stratified Simple Random Sampling design (without replacement)

Usage

```
BLE_SSRS(ys, h, N, m = NULL, v = NULL, sigma = NULL)
```

Arguments

ys	vector of sample observations or sample mean for each strata (sigma parameter will be required in this case).
h	vector with number of observations in each strata.
N	vector with the total size of each strata.
m	vector with the prior mean of each strata. If NULL, sample mean for each strata will be used (non-informative prior).
V	vector with the prior variance of an element from each strata (bigger than sigma^2 for each strata). If NULL, it will tend to infinity (non-informative prior).
sigma	vector with the prior estimate of variability (standard deviation) within each strata of the population. If NULL, sample variance of each strata will be used.

Value

A list containing the following components:

- est. beta BLE of Beta (BLE for the individuals in each strata)
- Vest.beta Variance associated with the above
- est.mean BLE for each individual not in the sample
- Vest.mean Covariance matrix associated with the above
- est.tot BLE for the total
- Vest.tot Variance associated with the above

Source

```
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X201400111886
```

References

Gonçalves, K.C.M, Moura, F.A.S and Migon, H.S.(2014). Bayes Linear Estimation for Finite Population with emphasis on categorical data. Survey Methodology, 40, 15-28.

10 C

Examples

```
ys \leftarrow c(2,-1,1.5, 6,10, 8,8)
h <- c(3,2,2)
N < -c(5,5,3)
m < -c(0,9,8)
v <- c(3,8,1)
sigma <- c(1,2,0.5)
Estimator <- BLE_SSRS(ys, h, N, m, v, sigma)
Estimator
# Same example but informing sample means instead of sample observations
y1 <- mean(c(2,-1,1.5))
y2 <- mean(c(6,10))
y3 <- mean(c(8,8))
ys <- c(y1, y2, y3)
h <- c(3,2,2)
N < -c(5,5,3)
m < -c(0,9,8)
v \leftarrow c(3,8,1)
sigma <- c(1,2,0.5)
Estimator <- BLE_SSRS(ys, h, N, m, v, sigma)
Estimator
```

С

calculates the C factor

Description

calculates the C factor

Usage

ys	response variable of the sample
xs	explicative variable of the sample
R	covariance matrix of Beta
Vs	covariance of sample errors

create1 11

create1

creates vector of 1's to be used in the estimators

Description

creates vector of 1's to be used in the estimators

Usage

```
create1(y)
```

Arguments

У

sample matrix

Value

vector of 1's with size equal to the number of observations in the sample

E_beta

calculates the BLE for Beta

Description

calculates the BLE for Beta

Usage

```
E_beta(ys, xs, a, R, Vs)
```

ys	response variable of the sample
xs	explicative variable of the sample
a	vector of means from Beta
R	covariance matrix of Beta
Vs	covariance of sample errors

 T_{Reg}

E_theta_Reg	calculates the BLE for the individuals not in the sample
-------------	--

Description

calculates the BLE for the individuals not in the sample

Usage

```
E_{theta} = Reg(ys, xs, a, R, Vs, x_{nots})
```

Arguments

ys	response variable of the sample
XS	explicative variable of the sample
а	vector of means from Beta
R	covariance matrix of Beta
Vs	covariance of sample errors
x_nots	values of X for the individuals not in the sample

 T_Reg calculates BLE for the total T

Description

calculates BLE for the total T

Usage

```
T_Reg(ys, xs, a, R, Vs, x_nots)
```

ys	response variable of the sample
XS	explicative variable of the sample
a	vector of means from Beta
R	covariance matrix of Beta
Vs	covariance of sample errors
x_nots	values of X for the individuals not in the sample

VT_Reg

VT_Reg

calculates risk matrix associated with the BLE for for the total T

Description

calculates risk matrix associated with the BLE for for the total T

Usage

```
VT_Reg(ys, xs, a, R, Vs, x_nots, V_nots)
```

Arguments

ys	response variable of the sample
xs	explicative variable of the sample
а	vector of means from Beta
R	covariance matrix of Beta
Vs	covariance of sample errors
x_nots	values of X for the individuals not in the sample
V_nots	covariance matrix of the individuals not in the sample

V_beta

calculates the risk matrix associated with the BLE for Beta

Description

calculates the risk matrix associated with the BLE for Beta

Usage

```
V_beta(ys, xs, R, Vs)
```

ys	response variable of the sample
XS	explicative variable of the sample
R	covariance matrix of Beta
Vs	covariance of sample errors

V_theta_Reg

V_theta_Reg	calculates the risk matrix associated with the BLE for the individuals not in the sample

Description

calculates the risk matrix associated with the BLE for the individuals not in the sample

Usage

```
V_theta_Reg(ys, xs, R, Vs, x_nots, V_nots)
```

ys	response variable of the sample
xs	explicative variable of the sample
R	covariance matrix of Beta
Vs	covariance of sample errors
x_nots	values of X for the individuals not in the sample
V_nots	covariance matrix of the individuals not in the sample

Index

```
*\ datasets
     {\tt BigCity}, \textcolor{red}{2}
BigCity, 2, 3
BLE_Categorical, 3
BLE_Ratio, 4
BLE_Reg, 6
BLE_SRS, 7
BLE_SSRS, 9
C, 10
create1, 11
E_beta, 11
E_theta_Reg, 12
T_Reg, 12
V_beta, 13
V_theta_Reg, 14
VT_Reg, 13
```